Ремонт деталей класса полые цилиндры

Содержание

Презентация на тему: Раздел 4. Технологии восстановления деталей, ремонта узлов и оборудования

Ремонт деталей класса полые цилиндры

Тема 4.3, 4.4, 4.5. Ремонт деталей класса «круглые стержни», «полые цилиндры», узлов систем смазки и охлаждения.Занятия 38, 39, 40.

Изображение слайда

2

Слайд 2: Учебные вопросы:

Ремонт деталей класса «круглые стержни».Ремонт деталей класса «полые цилиндры».Ремонт узлов и приборов систем охлаждения и смазки.

Изображение слайда

3

Слайд 3: 1 учебный вопрос

Ремонт деталей класса «круглые стержни».

Изображение слайда

4

Слайд 4

Класс деталей«круглые стержни»:имеют цилиндрическую форму;длина значительно превышает диаметр.

Изображение слайда

5

Слайд 5

К деталям «круглые стержни» относят:поршневые пальцы,оси привода сцепления,валики водяного насоса,шкворни,оси блока шестерен заднего хода,толкатели,валы коробок передач,карданные валы и крестовины карданов,валы и полуоси задних мостов,поворотные цапфы,валы рулевого управления,впускные и выпускные клапаны,коленчатые и распределительные валы и др.

Изображение слайда

6

Слайд 6

Характерные дефекты:износ шеек,повреждение или износ резьбовых поверхностей,неплоскостность,биение привалочных поверхностей фланцев,износ гнезд под подшипники,износ эксцентриков и кулачков,износ шлицов,повреждения установочных поверхностей,износ зубьев.

Изображение слайда

7

Слайд 7

Типовой технологический процесс восстановления деталей класса «круглые стержни»операцияоборудованиеИсправление центровых отверстийТокарный или центровочный станокУстранение радиального биенияПрессУстранение поврежденной или изношенной резьбыТокарный станокНаплавка резьбовых и шлицевых поверхностей, заварка шпоночных пазовУстановка для наплавкиПравка деталей после наплавки (по потребности)Пресс

Изображение слайда

Реклама. Продолжение ниже

8

Слайд 8

операцияоборудованиеМеханическая обработка наплавленных поверхностей (резьбовых, шлицевых, шпоночных пазов и гладких отверстий)Токарный, фрезерный, сверлильный станкиПредварительная и окончательная обработка поверхностей, подлежащих сопряжению с ДРДТокарный станокЗапрессовка ДРДПрессПредварительная обработка ДРД после запрессовкиКруглошлифовальный и токарный станкиНаплавка шеекУстановка для наплавкиПравка вала после наплавкиПрессТермическая обработкаТермическая печь

Изображение слайда

9

Слайд 9

операцияоборудованиеПравкаПрессПредварительная механическая обработка наплавленных шеекТокарный и Круглошлифовальный станкиПодготовка поверхностей к элек­трохимическому наращиванию-Нанесение электрохимических покрытийУстановкаПредварительная обработка электрохимических покрытийКруглошлифовальный станокЧистовая обработка поверхностейТо же

Изображение слайда

10

Слайд 10: 2 учебный вопрос

Ремонт деталей класса «полые цилиндры».

Изображение слайда

11

Слайд 11

Класс деталей«полые цилиндры»:наличие концентричных наружных и внутренних цилиндрических поверхностей;отношение высоты к наибольшему диаметру не менее 0,5.

Изображение слайда

12

Слайд 12

К классу «полые цилиндры» относятся:гильзы цилиндров,втулки,крышки подшипников первичного вала коробки передач,фланцы валов коробки передач,ступицы колес, чашки дифференциалов,втулки и др.Детали этого класса чаще всего изготавливаются из модифицированного, ковкого и специального чугуна, углеродистых сталей.

Изображение слайда

13

Слайд 13

Основные дефекты деталей класса «полые цилиндры»:износы, задиры, кольцевые риски на трущихся поверхностях.износ внутренних и наружных посадочных мест под подшипники;износ шеек под сальники;

Изображение слайда

14

Слайд 14: 3 учебный вопрос

Ремонт узлов и приборов систем охлаждения и смазки.

Изображение слайда

Реклама. Продолжение ниже

15

Слайд 15

Ремонт системы охлажденияОсновные возможные дефекты деталей водяного насоса:сколы и трещины корпуса,срыв резьбы в отверстиях,износ посадочных мест под подшипники и упорную втулку;изгиб и износ посадочного места под крыльчатку на валике, под втулками, сальниками и шкивами вентиляторов;износ, трещины и коррозия поверхности лопаток крыльчатки;износы внутренней поверхности втулок и шпоночной канавки.

Изображение слайда

16

Слайд 16

Возможные дефекты деталей вентиляторов:износ посадочных мест в шкивах под наружные кольца подшипников качения,износ ручьев в шкивах под ремень,ослабление заклёпок на крестовине,изгиб крестовины и лопастей.

Изображение слайда

17

Слайд 17

Радиаторы могут иметь следующие основные дефекты:отложения накипи на внутренних стенках трубок и резервуаров, их повреждения;загрязнения наружных поверхностей трубок, сердцевины, охлаждающих пластин и пластин каркаса,течь трубок,пробоины, вмятины или трещины на бачках,нарушение герметичности в местах пайки.

Изображение слайда

18

Слайд 18

Ремонт системы смазкиОсновные дефекты деталей масляного насоса и масляных фильтров:трещины и обломы;износ рабочих поверхностей крышек насоса, зубчатых колес, гнезд под них, шеек ведущего вала насоса;износ гнезд и фасок клапанов;повреждения резьбы в отверстиях.

Изображение слайда

19

Последний слайд презентации: Раздел 4. Технологии восстановления деталей, ремонта узлов и оборудования: The end

Изображение слайда

Источник: https://slide-share.ru/razdel-4-tekhnologii-vosstanovleniya-detalej-remonta-uzlov-i-oborudovaniya-211404

Цилиндр и поршень: что нужно знать об этих деталях и как продлить срок их службы?

Ремонт деталей класса полые цилиндры
В статье подробно рассмотрены ключевые детали автомобильного двигателя – поршень и цилиндр. Уделено внимание их конструкции, функциям, условиям работы, возможным проблемам при эксплуатации и путям их решения.

Читайте также  Ремонт резьбы в алюминиевом блоке

Цилиндр и поршень – ключевые детали любого двигателя. В замкнутой полости цилиндро-поршневой группы (ЦПГ) происходит сгорание топливно-воздушной смеси. Газы, образующиеся при этом, воздействуют на поршень – он начинает двигаться и заставляет вращаться коленчатый вал.

Цилиндр и поршень обеспечивают оптимальный режим работы двигателя в любых условиях эксплуатации автомобиля.

Рассмотрим эту пару подробнее: конструкцию, функции, условия работы, возможные проблемы при эксплуатации элементов ЦПГ и пути их решения.

Принцип работы цилиндро-поршневой группы

Современные двигатели внутреннего сгорания оснащены блоками, в которые входят от 1 до 16 цилиндров – чем их больше, тем мощнее силовой агрегат.

Внутренняя часть каждого цилиндра – гильза – является его рабочей поверхностью. Внешняя – рубашка – составляет единое целое с корпусом блока. Рубашка имеет множество каналов, по которым циркулирует охлаждающая жидкость.

Внутри цилиндра находится поршень. В результате давления газов, выделяющихся в процессе сгорания топливно-воздушной смеси, он совершает возвратно-поступательное движения и передает усилия на шатун. Кроме того, поршень выполняет функцию герметизации камеры сгорания и отводит от нее излишки тепла.

Поршень включает следующие конструктивные элементы:

  • Головку (днище)
  • Поршневые кольца (компрессионные и маслосъемные)
  • Направляющую часть (юбку)

Бензиновые двигатели оснащены достаточно простыми в изготовлении поршнями с плоской головкой. Некоторые модели имеют канавки, способствующие максимальному открытию клапанов. Поршни дизельных двигателей отличаются наличием на днищах выемок – благодаря им воздух, поступающий в цилиндр, лучше перемешивается с топливом.

Кольца, установленные в специальные канавки на поршне, обеспечивают плотность и герметичность его соединения с цилиндром. В двигателях разного типа и предназначения количество и расположение колец могут отличаться.

Чаще всего поршень содержит два компрессионных и одно маслосъемное кольцо.

Компрессионные (уплотняющие) кольца могут иметь трапециевидную, бочкообразную или коническую форму. Они служат для минимизации попадания газов в картер двигателя, а также отведения тепла от головки поршня к стенкам цилиндра.

https://www.youtube.com/watch?v=irCu5sTX1ic

Верхнее компрессионное кольцо, которое изнашивается быстрее всех, обычно обработано методом пористого хромирования или напылением молибдена. Благодаря этому оно лучше удерживает смазочный материал и меньше повреждается. Остальные уплотняющие кольца для лучшей приработки к цилиндрам покрывают слоем олова.

С помощью маслосъемного кольца поршень, совершающий возвратно-поступательные движения в гильзе, собирает с ее стенок излишки масла, которые не должны попасть в камеру сгорания. Через дренажные отверстия поршень «забирает» масло внутрь, а затем отводит его в картер двигателя.

Направляющая часть поршня (юбка) обычно имеет конусную или бочкообразную форму – это позволяет компенсировать неравномерное расширение поршня при высоких рабочих температурах. На юбке расположено отверстие с двумя выступами (бобышками) – в нем крепится поршневой палец, служащий для соединения поршня с шатуном.

Палец представляет собой деталь трубчатой формы, которая может либо закрепляться в бобышках поршня или головке шатуна, либо свободно вращаться и в бобышках, и в головке (плавающие пальцы).

Поршень с коленчатым валом соединяется шатуном. Его верхняя головка движется возвратно-поступательно, нижняя вращается вместе с шатунной шейкой коленвала, а стержень совершает сложные колебательные движения. Шатун в процессе работы подвергается высоким нагрузкам – сжатию, изгибу и растяжению – поэтому его производят из прочных, жестких, но в то же время легких (в целях уменьшения сил инерции) материалов.

Конструкционные материалы деталей ЦПГ

Сегодня цилиндры и поршни двигателя чаще всего производят из алюминия или стали с различными присадками. Иногда для внешней части блока цилиндров используют алюминий, имеющий небольшой вес, а для гильзы, контактирующей с движущимся поршнем, – более прочную сталь.

В отличие от чугуна, который применялся ранее для изготовления деталей ЦПГ, внедрение алюминия – намного более легкого, но износостойкого материала – стало толчком к появлению мощных и высокооборотистых двигателей.

Современные автомобили, особенно с дизельными двигателями, все чаще оснащаются сборными поршнями из стали. Они имеют меньшую компрессионную высоту, чем алюминиевые, поэтому позволяют использовать удлиненные шатуны. В результате боковые нагрузки в паре «поршень-цилиндр» существенно снижаются.

Поршневые кольца, наиболее подверженные износу и деформациям, производят из специального высокопрочного чугуна с легирующими добавками (молибденом, хромом, вольфрамом, никелем).

Значительные механические и тепловые циклические нагрузки отрицательно сказываются на работоспособности элементов цилиндро-поршневой группы. В то же время от их состояния напрямую зависит стабильная компрессия двигателя, обеспечивающая его уверенный холодный и горячий запуск, мощность, экологичность и другие эксплуатационные показатели.

Именно поэтому для изготовления поршней и других деталей ЦПГ применяются материалы, обладающие высокой механической прочностью, хорошей теплопроводностью, незначительным коэффициентом линейного расширения, отличными антифрикционными и антикоррозионными свойствами.

В целях снижения потерь на трение производители поршней покрывают их боковую поверхность специальными антифрикционными составами на основе твердых смазочных частиц: графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается, поршни снова испытывают высокие нагрузки, под влиянием которых изнашиваются и выходят из строя.

Одним из самых эффективных антифрикционных покрытий поршней является MODENGY Для деталей ДВС.

Читайте также  Ремонт стоек стабилизатора своими руками

Состав на основе сразу двух твердых смазок – высокоочищенного дисульфида молибдена и поляризованного графита – применяется для первоначальной обработки юбок поршней или восстановления старого заводского покрытия.

MODENGY Для деталей ДВС имеет практичную аэрозольную упаковку с оптимально настроенными параметрами распыления, поэтому наносится на юбки поршней легко, быстро и равномерно.

На поверхности покрытие создает долговечную сухую защитную пленку, которая снижает износ деталей и препятствует появлению задиров.

MODENGY Для деталей ДВС полимеризуется при комнатной температуре, не требуя дополнительного оборудования.

https://www.youtube.com/watch?v=OCZTLdYaHOk

Для подготовки поверхностей перед нанесением покрытия их необходимо обработать Специальным очистителем-активатором MODENGY. Только в таком случае производитель гарантирует прочное сцепление состава с основой и долгий срок службы готового покрытия. Оба средства входят в Набор для нанесения антифрикционного покрытия на детали ДВС.

Методы охлаждения и смазывания цилиндро-поршневой группы

В каждом цикле работы двигателя сгорает большое количество топливно-воздушной смеси. При этом все детали цилиндро-поршневой группы испытывают экстремальные температурные воздействия, поэтому нуждаются в эффективном охлаждении – воздушном или жидкостном.

Наружная поверхность цилиндров ДВС с воздушным охлаждением покрыта множеством ребер, которые обдувает встречный или искусственно созданный воздухозаборниками воздух.

При водяном охлаждении жидкость, циркулирующая в толще блока, омывает нагретые цилиндры, забирая таким образом излишек тепла. Затем жидкость попадает в радиатор, где охлаждается и вновь подается к цилиндрам.

Второй по важности момент после отвода тепла – система смазки цилиндров. Без нее поршни рано или поздно подвергаются заклиниванию, что может привести к поломке двигателя.

Для того чтобы масляная пленка дольше удерживалась на внутренних поверхностях цилиндров, их подвергают хонингованию, т.е. нанесению специальной микросетки. Стабильность слоя масла гарантирует не только максимально низкое трение в паре «поршень-цилиндр», но и способствует отведению лишнего тепла из ЦПГ.

Неисправности ЦПГ и их диагностика

Даже грамотная эксплуатация автомобиля не гарантирует, что со временем не возникнет проблем с его цилиндро-поршневой группой.

О неисправностях деталей ЦПГ свидетельствует увеличение расхода масла, ухудшение пусковых качеств двигателя, снижение его мощности, появление каких-либо посторонних шумов при работе. Эти моменты нельзя игнорировать, так как стоимость ремонта цилиндро-поршневой группы иногда равна стоимости автомобиля в целом.

Под влиянием очень высоких нагрузок и температур:

  • На рабочих поверхностях цилиндров появляются трещины, сколы, пробоины
  • Посадочные места под гильзу деформируются
  • Днища поршней оплавляются и прогорают
  • Поршневые кольца разрушаются, закоксовываются, залегают
  • На теле поршней возникают различные повреждения
  • Зазоры между поршнем и цилиндром сужаются, вследствие чего на юбках появляются задиры
  • Наблюдается общий износ цилиндров и поршней

Перечисленные неисправности цилиндро-поршневой группы неизбежны при перегреве двигателя. Он может возникнуть из-за нарушения герметичности системы охлаждения, отказа термостата или помпы, сбоев в работе вентилятора охлаждения радиатора, поломки самого радиатора или его датчика.

Точно определить состояние цилиндров и поршней можно с помощью специализированной диагностики самой ЦПГ (при полной разборке двигателя) или других автомобильных систем (например, воздушного фильтра).

В ходе сервисных работ измеряется компрессия в цилиндрах ДВС, берутся пробы картерного масла и пр. Все это помогает оценить исправность работы цилиндро-поршневой группы.

Ремонт цилиндро-поршневой группы двигателя включает замену маслосъемных и компрессионных колец, установку новых поршней, шатунов, восстановление (расточку) цилиндров.

Степень износа последних определяется с помощью индикаторного нутрометра. Трещины и сколы на стенках устраняются эпоксидными пастами или путем сварки.

Новые поршни – с нужным диаметром и массой – подбирают к гильзам, а поршневые пальцы – к поршням и втулкам верхних головок шатунов. Шатуны предварительно проверяют и при необходимости восстанавливают.

Как продлить ресурс ЦПГ?

Ресурс цилиндро-поршневой группы зависит от типа двигателя, режима его эксплуатации, регулярности обслуживания и многих других факторов. Срок службы ЦПГ отечественных автомобилей, как правило, меньше, чем у иномарок: около 200 тыс. км против 500 тыс.км.

Для того, чтобы детали ЦПГ вырабатывали свой ресурс полностью, рекомендуется:

  • Использовать моторное масло, одобренное автопроизводителем
  • Осуществлять замену масла и охлаждающей жидкости строго по регламенту
  • Следить за температурным режимом работы двигателя, не допускать его перегрева и холодного запуска
  • Регулярно проводить диагностику автомобиля
  • Применять для обслуживания автокомпонентов специальные средства, которые могут защитить их от усиленного износа и максимально продлить срок службы

Источник: https://atf.ru/articles/materialy_dlya_avtotekhniki/tsilindr-i-porshen-chto-nuzhno-znat-ob-etikh-detalyakh-i-kak-prodlit-srok-ikh-sluzhby/

Восстановление деталей под ремонтный размер механической обработкой резанием

В авторемонтном производстве широко применяется восстановление деталей под ремонтный размер. Этот способ прост в осуществлении и доступен не только для стационарных ремонтных предприятий, но и для подвижных ремонтных мастерских.

Сущность способа восстановления деталей под ремонтный размер состоит в том, что с поверхности одной из деталей (более дорогостоящей, как правило,— базовой) снимается слой металла — припуска на устранение искажения геометрической формы, и получают новый ремонтный размер: меньшего диаметра для вала и большего для деталей класса «полые цилиндры» по отношению к номинальному размеру диаметра детали. Другая сопряженная деталь заменяется новой, имеющей тот же ремонтный размер.

Читайте также  Ремонт металлической кровли от протекания

Для обеспечения посадки деталей в сопряжении (зазора или натяга) базовую восстанавливаемую деталь необходимо восстанавливать с учетом обеспечения зазора или натяга при сопряжении деталей. Ремонтный размер диаметра гильзы цилиндра больше ремонтного размера поршня того же ремонтного размера на величину зазора.

Ремонтные размеры подразделяются на стандартные, свободные (пригоночные) и регламентированные.

Рекламные предложения на основе ваших интересов:

Рис. 15. Методы и виды механической обработки деталей

Стандартные (категорийные) ремонтные размеры — это такие отличные от номинальных размеры деталей, которые определяются ремонтными размерами сопряженных деталей, выпускаемых заводами-изготовителями машиностроительного производства. Так, выпускаемые заводами промышленности поршни и кольца определяют ремонтные размеры гильз цилиндров и цилиндров блоков ДВС и компрессоров; вкладыши коленчатого вала — ремонтные размеры шеек коленчатого вала. Стандартные (категорийные) ремонтные размеры указываются в «Технических условиях на контроль, сортировку и восстановление деталей».

Свободные ремонтные размеры, получаемые механической обработкой детали до получения правильной геометрической формы и требуемой шероховатости поверхности, по размерам строго не регламентируются, и их размеры ограничиваются только минимальной величиной. Посадка сопряженной детали (зазор) достигается путем выполнения регулировочных работ.

Например, кулачки распределительного вала восстанавливаются шлифованием по копиру под свободный ремонтный размер. Компенсация увеличения зазора между клапанами и носками коромысел достигается за счет уменьшения его регулировочным болтом. Минимальный размер кулачка ограничивается величиной выступа тыльной части кулачка над поверхностью вала (0,05 мм).

Под свободный ремонтный размер восстанавливаются изношенные поверхности фасок тарелок, седел и торцов клапанов, нажимные диски сцепления и другие детали.

Схема восстановления ремонтных размеров вала и гильзы цилиндра ДВС показана на рис. 16. Минимальный размер диаметра вала и максимальный размер диаметра отверстия цилиндра определяются прочностью вала или стенок цилиндра и минимальной толщиной слоя термической обработки поверхностного слоя детали. Восстановление деталей под ремонтный размер осуществляется в соответствии с разработанными рабочими технологическими процессами.

Для восстановления базовых деталей ДВС — гильз цилиндров и шеек коленчатых валов — механической обработкой под ремонтный размер расчет производят в следующей последовательности: – определяют наибольший и наименьший размеры диаметров гильз цилиндров и шеек коленчатого вала; на основании ТУ на контроль, сортировку и восстановление деталей по наибольшему размеру диаметра цилиндра и наименьшему размеру диаметра шеек коленчатого вала определяют ближайший ремонтный размер;

– после выбора ремонтного размера определяют режимы обработки растачиванием, скорость резания, глубину резания, подачу, частоту вращения шпинделя, число проходов и основное машинное время.

Скорость резания ир определяется по табличным данным в зависимости от вида обрабатываемого материала и по графику в зависимости от необходимой шероховатости поверхности детали.

К режимам шлифования относятся окружная скорость вращения шлифовального круга, поперечная и продольная подачи. Поперечная подача (глубина шлифования) выбирается по справочникам и находится в пределах 0,05- 0,08 мм в зависимости от материала и размера детали. Продольная подача (путь перемещения шлифовального круга за один его оборот), скорость шлифования и частота вращения шлифовального круга определяются аналогично точению.

Рис. 16. Восстановление деталей под ремонтный размер

Перспективные направления совершенствования механической обработки и повышения качества восстанавливаемых деталей.

Совершенствование механической обработки осуществляется по трем направлениям: – совершенствование технологических процессов восстановления деталей; – применение в ремонтном производстве современного высокопроизводительного промышленного и специализированного оборудования;

-применение новых методов обработки деталей и новых видов инструмента.

Технологические процессы совершенствуются путем повышения точности обработки деталей, при оснащении оборудования подшипниками, не подлежащими износу (например, подшипниками с воздушной смазкой, гидравлической смазкой), повышения производительности технологических процессов (увеличение скоростей резания при обработке деталей резанием, сокращение вспомогательного времени) внедрения плазменно-механической обработки деталей.

В авторемонтном производстве в настоящее время применяется следующее высокопроизводительное оборудование с числовым программным, управлением: токарно-винторезные станки с ЧПУ типа 16К20Т в комплекте с роботами; фрезерные станки с ЧПУ; станки типа «обрабатывающий центр»; многошпиндельные алмазно-расточные станки с наладочным устройством и ЧПУ типа 1295 и 1296; специальные станки для шлифования коленчатых валов с гидропередачей шлифовальной бабки и гидроприжимом типа 3B423; специальные копировальные станки для восстановления кулачков распределительных валов типа 3M423 и гибкие автоматизированные линии ГАП.

Внедрение в авторемонтное производство новых методов механической обработки позволяет повысить эффективность процессов восстановления деталей. К этим методам относятся резание, совмещенное с пластическим деформированием и действием электроэрозии; резание, совмещенное с действием магнитного поля — магнитно-абразивное полирование; холодное пластическое деформирование — раскатывание, обкатывание, выглаживание, виброобкатывание и т. д.

Совершенствование механической обработки при применении новых видов инструмента достигается резцами, шлифовальными кругами, хонинговальными брусками, полировальными лентами, пастами из синтетических материалов (кубического нитрида бора— эльбора-3), алмазами, съемными твердосплавными пластинами из вольфрамовых ТН-20 и термита.

Рекламные предложения:

Читать далее: Восстановление деталей обработкой давлением

Категория: — Ремонт автомобилей КАмаЗ

→ Справочник → Статьи → Форум

Источник: http://stroy-technics.ru/article/vosstanovlenie-detalei-pod-remontnyi-razmer-mekhanicheskoi-obrabotkoi-rezaniem